首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vibrational and thermodynamic properties of metals from a model embedded-atom potential
Authors:Qiuping Bian  RC Shukla
Institution:Physics Department, Brock University, St. Catharines, Ont., Canada L2S 3A1
Abstract:This work provides the first systematic test of validity of the embedded-atom potentials of Mei et al. Phys. Rev. B 43 (1991) 4653], via a complete study of the vibrational and thermodynamic properties of isoelectronic transition (Ni, Pd, Pt) and noble (Cu, Ag, Au) metals. Phonon dispersion curves and thermal properties are studied within the quasiharmonic approximation. Results for the temperature-dependence of the lattice constants, coefficients of linear thermal expansion, isothermal and adiabatic bulk moduli, heat capacities at constant volume and constant pressure, Debye temperatures and Grüneisen parameters are presented. Electronic contribution to the specific heat is included explicitly via density-functional calculation. The calculated phonon frequencies for Ag and Cu agree well with the results from inelastic neutron scattering experiments. Despite less satisfactory agreement between calculated and measured phonon frequencies for the other four metals, isothermal and adiabatic bulk moduli and the specific heats of all metals are reproduced reasonably well by the model, while the Grüneisen parameter and Debye temperature are underestimated by about 10%. The coefficient of linear thermal expansion is underestimated with respect to measured values in most cases except for Pt and Au. The results are good for Pt up to 1000 K and for Au up to 500 K.
Keywords:A  Metals  C  Semi-empirical/ab initio method  D  Lattice dynamics and thermodynamic properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号