首页 | 本学科首页   官方微博 | 高级检索  
     


Carrier-Free Immobilization of α-Galactosidase as Nano-Biocatalysts for Synthesizing Prebiotic α-Galacto-Oligosaccharides
Authors:Yan Liu  Jingyi Yang  Ke Wang  Feiyu Duan  Lili Lu
Affiliation:School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; (Y.L.); (J.Y.); (K.W.); (F.D.)
Abstract:α-Galacto-oligosaccharides (α-GOSs) have great functions as prebiotics and therapeutics. This work established the method of batch synthesis of α-GOSs by immobilized α-galactosidase for the first time, laying a foundation for industrial applications in the future. The α-galactosidase from Aspergillus niger L63 was immobilized as cross-linked enzyme aggregates (CLEAs) nano-biocatalyst through enzyme precipitating and cross-linking steps without using carriers. Among the tested agents, the ammonium sulfate showed high precipitation efficacy and induced regular structures of α-galactosidase CLEAs (Aga-CLEAs) that had been analyzed by scanning electron microscopy and Fourier-transform infrared spectroscopy. Through optimization by response surface methodology, the ammonium sulfate-induced Aga-CLEAs achieved a high activity recovery of around 90% at 0.55 U/mL of enzymes and 36.43 mM glutaraldehyde with cross-linking for 1.71 h. Aga-CLEAs showed increased thermal stability and organic solvent tolerance. The storage ability was also improved since it maintained 74.5% activity after storing at 4 °C for three months, significantly higher than that of the free enzyme (21.6%). Moreover, Aga-CLEAs exhibited excellent reusability in the α-GOSs synthesis from galactose, retaining above 66% of enzyme activity after 10 batch reactions, with product yields all above 30%.
Keywords:α  -galactosidase, immobilization, cross-linked enzyme aggregates, α  -galacto-oligosaccharides, response surface methodology, batch synthesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号