首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Case-based modeling and the SACS Toolkit: a mathematical outline
Authors:Brian Castellani  Rajeev Rajaram
Institution:1. Dept. of Sociology, Kent State University, Ashtabula, OH, 44004, USA
2. Dept. of Mathematical Sciences, Kent State University, Ashtabula, OH, 44004, USA
Abstract:Researchers in the social sciences currently employ a variety of mathematical/computational models for studying complex systems. Despite the diversity of these models, the majority can be grouped into one of three types: agent (rule-based) modeling, dynamical (equation-based) modeling and statistical (aggregate-based) modeling. The purpose of the current paper is to offer a fourth type: case-based modeling. To do so, we review the SACS Toolkit: a new method for quantitatively modeling complex social systems, based on a case-based, computational approach to data analysis. The SACS Toolkit is comprised of three main components: a theoretical blueprint of the major components of a complex system (social complexity theory); a set of case-based instructions for modeling complex systems from the ground up (assemblage); and a recommended list of case-friendly computational modeling techniques (case-based toolset). Developed as a variation on Byrne (in Sage Handbook of Case-Based Methods, pp.?260?C268, 2009), the SACS Toolkit models a complex system as a set of k-dimensional vectors (cases), which it compares and contrasts, and then condenses and clusters to create a low-dimensional model (map) of a complex system??s structure and dynamics over time/space. The assembled nature of the SACS Toolkit is its primary strength. While grounded in a defined mathematical framework, the SACS Toolkit is methodologically open-ended and therefore adaptable and amenable, allowing researchers to employ and bring together a wide variety of modeling techniques. Researchers can even develop and modify the SACS Toolkit for their own purposes. The other strength of the SACS Toolkit, which makes it a very effective technique for modeling large databases, is its ability to compress data matrices while preserving the most important aspects of a complex system??s structure and dynamics across time/space. To date, while the SACS Toolkit has been used to study several topics, a mathematical outline of its case-based approach to quantitative analysis (along with a case study) has yet to be written?Chence the purpose of the current paper.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号