首页 | 本学科首页   官方微博 | 高级检索  
     


Palladium Nanoparticles Bonded to Two‐Dimensional Iron Oxide Graphene Nanosheets: A Synergistic and Highly Reusable Catalyst for the Tsuji–Trost Reaction in Water and Air
Authors:Jian Liu  Prof. Xing Huo  Dr. Tianrong Li  Prof. Zhengyin Yang  Prof. Pinxian Xi  Zhiyi Wang  Prof. Baodui Wang
Affiliation:Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Lanzhou University Gansu, Lanzhou, 730000 (P.R. China), Fax: (+86)?931‐8912582
Abstract:Low cost, high activity and selectivity, convenient separation, and increased reusability are the main requirements for noble‐metal‐nanocatalyst‐catalyzed reactions. Despite tremendous efforts, developing noble‐metal nanocatalysts to meet the above requirements remains a significant challenge. Here we present a general strategy for the preparation of strongly coupled Fe3O4 and palladium nanoparticles (PdNPs) to graphene sheets by employing polyethyleneimine as the coupling linker. Transmission electron microscopic images show that Pd and Fe3O4 nanoparticles are highly dispersed on the graphene surface, and the mean particle size of Pd is around 3 nm. This nanocatalyst exhibits synergistic catalysis by Pd nanoparticles supported on reduced graphene oxide (rGO) and a tertiary amine of polyethyleneimine (Pd/Fe3O4/PEI/rGO) for the Tsuji–Trost reaction in water and air. For example, the reaction of ethyl acetoacetate with allyl ethyl carbonate afforded the allylated product in more than 99 % isolated yield, and the turnover frequency reached 2200 h?1. The yield of allylated products was 66 % for Pd/rGO without polyethyleneimine. The catalyst could be readily recycled by a magnet and reused more than 30 times without appreciable loss of activity. In addition, only about 7.5 % of Pd species leached off after 20 cycles, thus rendering this catalyst safer for the environment.
Keywords:graphene  palladium  nanoparticles  synergistic catalysis  Tsuji–  Trost reaction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号