首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Supercritical Carbon Dioxide Assisted Deposition of Fe3O4 Nanoparticles on Hierarchical Porous Carbon and Their Lithium‐Storage Performance
Authors:Dr Lingyan Wang  Dr Linhai Zhuo  Dr Chao Zhang  Prof?Dr Fengyu Zhao
Institution:1. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P.R. China), Fax: (+86)?431‐85262410;2. Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P.R. China);3. University of the Chinese Academy of Sciences, Beijing 100049 (P.R. China);4. College of Chemistry and Chemical Engineering, Taishan University, Taian 271021 (P.R. China)
Abstract:A composite of highly dispersed Fe3O4 nanoparticles (NPs) anchored in three‐dimensional hierarchical porous carbon networks (Fe3O4/3DHPC) as an anode material for lithium‐ion batteries (LIBs) was prepared by means of a deposition technique assisted by a supercritical carbon dioxide (scCO2)‐expanded ethanol solution. The as‐synthesized Fe3O4/3DHPC composite exhibits a bimodal porous 3D architecture with mutually connected 3.7 nm mesopores defined in the macroporous wall on which a layer of small and uniform Fe3O4 NPs was closely coated. As an anode material for LIBs, the Fe3O4/3DHPC composite with 79 wt % Fe3O4 (Fe3O4/3DHPC‐79) delivered a high reversible capacity of 1462 mA h g?1 after 100 cycles at a current density of 100 mA g?1, and maintained good high‐rate performance (728, 507, and 239 mA h g?1 at 1, 2, and 5 C, respectively). Moreover, it showed excellent long‐term cycling performance at high current densities, 1 and 2 A g?1. The enhanced lithium‐storage behavior can be attributed to the synergistic effect of the porous support and the homogeneous Fe3O4 NPs. More importantly, this straightforward, highly efficient, and green synthetic route will definitely enrich the methodologies for the fabrication of carbon‐based transition‐metal oxide composites, and provide great potential materials for additional applications in supercapacitors, sensors, and catalyses.
Keywords:electrochemistry  iron oxide  nanoparticles  organic–  inorganic hybrid composites  supercritical fluids
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号