首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Intermolecular Hydroamination of Vinylarenes by Iminoanilide Alkaline‐Earth Catalysts: A Computational Scrutiny of Mechanistic Pathways
Authors:Dr Sven Tobisch
Institution:University of St Andrews, School of Chemistry, Purdie Building, North Haugh, St Andrews, Fife KY16 9ST (UK), Fax: (+44)?1797‐383‐652
Abstract:A thorough computational exploration of the mechanistic intricacies of the intermolecular hydroamination (HA) of vinylarenes by a recently reported class of kinetically stabilised iminoanilide {N^N}Ae{N(SiMe3)2} ? (THF)n] alkaline‐earth amido compounds (Ae=Ca, Sr, Ba) is presented. Two distinct mechanistic pathways for catalytic HA mediated by alkaline‐earth and rare‐earth compounds have emerged over the years that account equally well for the specific features of the process. On one hand, a concerted proton‐assisted pathway to deliver the amine product in a single step can be invoked and, on the other, a stepwise σ‐insertive pathway that comprises a rapid, reversible migratory olefin insertion step linked to a less facile, irreversible Ae?C alkyl bond aminolysis. The results of the study presented herein, which employed a heavily benchmarked and reliable DFT methodology, supports a stepwise σ‐insertive pathway that involves fast and reversible migratory C?C bond insertion into the polar Ae?N pyrrolido σ bond. This proceeds with strict 2,1 regioselectivity via a highly polarised four‐centre transition state (TS) structure, linked to irreversible intramolecular Ae?C bond aminolysis of the alkaline‐earth alkyl intermediate as the energetically favourable mechanism. Turnover‐limiting aminolysis is consistent with the significant KIE measured; the DFT‐derived effective barrier matches the Eyring parameter empirically determined for the best‐performing {N^N}Ba(NR2) catalyst gratifyingly well. It also predicts the observed trend in reactivity (Ca<Sr<Ba) correctly and the computationally estimated primary KIE is close to the observed values. Non‐competitive kinetic demands militate against the operation of the alternative concerted proton‐assisted pathway, which describes N?C bond formation triggered by concomitant amino proton transfer at the C?C linkage via a multi‐centre TS structure. A detailed comparison of {N^N}Ae(NR2) catalysts revealed that the variation in the Ae?pyrrolido bond strength together with the degree of protection of the alkaline earth by a sterically encumbering iminoanilide ligand scaffold not only profoundly influences the performance in HA catalysis, but also the likelihood of traversing rival mechanistic pathways.
Keywords:alkaline‐earth metals  density functional calculations  hydroamination  reaction mechanisms
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号