首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical analysis of the isolation of the vibration due to Rayleigh waves by using pile rows in the poroelastic medium
Authors:Bin Xu  Jian-Fei Lu  Jian-Hua Wang
Affiliation:(1) School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, People’s Republic of China
Abstract:The isolation of the vibration due to harmonic Rayleigh waves using pile rows embedded in a saturated poroelastic half-space is investigated in this study. Based on Biot’s theory and the potential function method, the free field solution for Rayleigh waves along the surface of the poroelastic half-space is derived first. The fundamental solution for a harmonic circular patch load applied in the poroelastic half-space are obtained in terms of Biot’s theory and the integral transform method. Using Muki’s method and the fundamental solution for the circular patch load as well as the Rayleigh waves solution for the poroelastic half-space, the second kind of Fredholm integral equations in the frequency domain for pile rows are derived. Numerical solution of the integral equations yields the dynamic response of the pile–soil system to incident Rayleigh waves. Influences of various parameters on the vibration isolation effect of piles rows are investigated numerically. Numerical results suggest that for the same vibration source, the same pile rows will produce a better vibration isolation effect for the poroelastic medium than for a single phase elastic medium. Also, stiffer piles tend to have better vibration isolation effect than flexible piles. Moreover, the pile length and the spacing between neighboring piles in each pile row have significant influence on the vibration isolation effect of pile rows.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号