首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanistic insights on how hydroquinone disarms OH and OOH radicals
Abstract:Phenol derivatives are distinguished as successful free radical scavengers. We present a detailed analysis of hydroxyl hydrogen abstraction from hydroquinone by hydroxyl and hydroperoxyl radical with emphasis on changes that take place in the vicinity of the transition state. Quantum theory of atoms in molecules is employed to elucidate the sequence of positive and negative charge transfer by studying selected properties of the three key atoms (the transferring hydrogen, the donor atom, and the acceptor atom) along intrinsic reaction path. The presented results imply that in both reactions, which are examples of proton coupled electron transfer, proton, and electron get simultaneously transferred to the radical oxygen atom. The fact that the hydrogen's charge and volume do not monotonously change in the vicinity of the transition state in the product valley results from the adjacency of the proton and the electron to the donor and the acceptor oxygen atoms. Obtaining a detailed understanding of mechanisms by which free radicals are disarmed is of paramount importance given the effects of those highly reactive species on biological systems. A comprehensive analysis of hydroxyl hydrogen abstraction from hydroquinone by hydroxyl and hydroperoxyl radicals, based on changes of selected electronic properties of the three most relevant atoms (hydrogen donor, hydrogen acceptor, and the hydrogen itself), along the reaction coordinate, can be obtained by first‐principles calculations.
Keywords:density functional theory  free radical scavenging  hydroquinone  proton coupled electron transfer  quantum theory of atoms in molecules
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号