Abstract: | This investigation reports the synthesis of poly(methyl methacrylate) via activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) and studies the effect of solvents and temperature on its polymerization kinetics. ARGET ATRP of methyl methacrylate (MMA) was carried out in different solvents and at different temperatures using CuBr2 as catalyst in combination with N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a ligand. Methyl 2‐chloro propionate was used as ATRP initiator and ascorbic acid was used as a reducing agent in the ARGET ATRP of MMA. The conversion was measured gravimetrically. The semilogarithmic plot of monomer conversion versus time was found to be linear, indicating that the polymerization follows first‐order kinetics. The linear polymerization kinetic plot also indicates the controlled nature of the polymerization. N,N‐Dimethylformamide (DMF), tetrahydrofuran (THF), toluene, and methyl ethyl ketone were used as solvents to study the effect on the polymerization kinetics. The effect of temperature on the kinetics of the polymerization was also studied at various temperatures. It has been observed that polymerization followed first‐order kinetics in every case. The rate of polymerization was found to be highest (kapp = 6.94 × 10−3 min−1) at a fixed temperature when DMF was used as solvent. Activation energies for ARGET ATRP of MMA were also calculated using the Arrhenius equation. |