首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Layered metal(IV) phosphonate materials: Solid‐state 1H, 13C, 31P NMR spectra and NMR relaxation
Abstract:Multinuclear solid‐state NMR and powder X‐ray diffraction data collected for phosphonate materials Zr(O3PC6H4PO3) · 3.6H2O and Sn(O3PC6H4PO3)0.85(O3POH)0.30 · 3.09H2O have resulted in the layered structure, where the phosphonic acids cross‐link the layers. The main structural motif (the 111 connectivity in the PO3 group) has been established by determination of chemical shift anisotropy parameters for phosphorus nuclei in the phosphonate groups. An analysis of the variable‐temperature 31P T1 measurements and the shapes of the phosphorus resonances in the 31P static NMR spectra have resulted in the dipolar mechanism of the phosphorus spin‐lattice relaxation, where the rotating phenylene rings reorient dipolar vectors PH as a driving force of the relaxation process. It has been found that water protons do not affect the 31P T1 times. The activation energy of the phenylene rotation in both compounds has been determined as low as 12.5 kJ/mol. The interpretation of the phosphorus relaxation data has been independently confirmed by the measurements of 1H T1 times for protons of the phenylene rings.
Keywords:13C  1H  31P  NMR  phosphonates  relaxation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号