首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantum information‐theoretic measures for the static screened Coulomb potential
Abstract:In this research work, the quantum information‐theoretic analysis of the static screened Coulomb potential has been carried out by studying both analytically and numerically the entropic measures, Fisher information as well as the Onicescu information energy of its wave function. Explicit expressions of these information‐theoretic measures were obtained. Using the Srivastava–Daoust linearization formula in terms of the multivariate Lauricella hypergeometric function, the Rényi entropy, Tsallis entropy, Onicescu information energy were analytically obtained. From the results obtained, it is observed that some of the Shannon entropies are negative, indicating that, negative entropies exists for the probability densities that are highly localized. The trends in the variation of the information‐theoretic measures with the potential screening parameter a for this atomic model are discussed. The Bialynicki‐Birula, Mycielski inequality (BBM), and the Fisher information based uncertainty relation are also verified.
Keywords:Fisher information  Onicescu information energy    nyi entropy  Schrö  dinger equation  Shannon entropy  static screened Coulomb potential  Tsallis entropy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号