Abstract: | In this work, a model based in strong‐stretching theory for polymer brushes grafted to finite planar surfaces is developed and solved numerically for two geometries: stripe‐like and disk‐like surfaces. There is a single parameter, , which represents the ratio between the equilibrium brush height and the grafting surface size, that controls the behavior of the system. When is large, the system behaves as if the polymer were grafted to a single line or point and the brush adopts a cylindrical or spherical shape. In the opposite extreme when it is small, the brush behaves as semi‐infinite and can be described as a planar undeformed brush region and an edge region, and the line tension approaches a limiting value. In the intermediate case, a brush with non‐uniform height and chain tilting is observed, with a shape and line tension depending on the value of . Relative stability of disk‐shaped, stripe‐shaped, and infinite lamellar micelles is analyzed based in this model. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 663–672 |