首页 | 本学科首页   官方微博 | 高级检索  
     


Benchmarking of DFT functionals for the kinetics and mechanisms of atmospheric addition reactions of OH radicals with phenyl and substituted phenyl‐based organic pollutants
Abstract:OH addition reactions play a pivotal role in the atmospheric transformation of a number of phenyl and substituted phenyl‐based persistent and toxic organic pollutants. Here, we screened appropriate DFT functionals to predict reaction mechanisms and rate constants (kOH) of the OH additions by taking benzene and substituted benzenes (C6H5F, C6H5Cl, C6H5Br, C6H5CH3, C6H5OH) as model compounds. By comparing the kOH values calculated with DFT methods to experimental values, we found that the ωB97 functional is the best among the 18 functionals considered (using the basis sets 6‐31 + G(d,p) for optimizations and 6‐311++G(3df,2pd) for single point energy calculations) in the temperature range of 230‐330 K. In addition, we found that some other functionals performed well in specific conditions, e.g., BMKD3 is good for benzene, halogenated benzenes and C6H5CH3, and CAM‐B3LYP is good for the reaction of C6H5OH at room temperature. Based on the diversity of the electronic structures of the selected model compounds and the frequent occurrence of certain substituents ( CH3,  OH,  F,  Cl, and  Br) in the target compounds, the functionals recommended here can be used for future study of the reaction mechanisms and kOH values for OH addition to phenyl and substituted phenyl‐based persistent and toxic organic pollutants.
Keywords:DFT functionals, kOH values    OH atmospheric addition  phenyl and substituted phenyl‐based persistent and toxic organic pollutants  reaction mechanisms
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号