首页 | 本学科首页   官方微博 | 高级检索  
     


A Dynamic Kinetic Model for Methanol to Light Olefins Reactions over a Nanohierarchical SAPO‐34 Catalyst: Catalyst Synthesis,Model Presentation,and Validation at the Bench Scale
Abstract:This study includes three main parts: synthesizing the hierarchical silicoaluminophosphate (SAPO‐34) catalyst, evaluating the performance of this modified catalyst in the methanol to light olefins (MTO) process, and providing a new dynamic kinetic model for the modified catalyst. At first, a carbon nanotube (CNT) was used as a mesopore template in the sonochemical synthesis of SAPO‐34 hierarchical catalyst. By comparing the performance of this hierarchical catalyst and the common catalyst in the MTO process, it is observed that better performance is obtained on a modified catalysts for a longer period of time. Then, nine process tests were performed in differential fixed bed reactors at different temperatures and space velocities to obtain the kinetic model of the desired catalyst in the MTO process. Finally, the dynamic kinetic model of the modified SAPO‐34 catalyst was considered for main reactions in the MTO process. In this model, the rate equations were assumed elementary and lumped, and the decreasing of the catalyst activity over time on stream was also considered. The reactions constant and catalyst activity coefficient for different reactions were obtained by simultaneous connection of the code related to the reactor model and the genetic algorithm and genetic programming codes. The results obtained from the kinetic model were consistent with the experimental results.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号