首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High‐order Padé and singly diagonally Runge‐Kutta schemes for linear ODEs,application to wave propagation problems
Abstract:In this article, we address the problem of constructing high‐order implicit time schemes for wave equations. We consider two classes of one‐step A‐stable schemes adapted to linear Ordinary Differential Equation (ODE). The first class, which is not dissipative is based on the diagonal Padé approximant of exponential function. For this class, the obtained schemes have the same stability function as Gauss Runge‐Kutta (Gauss RK) schemes. They have the advantage to involve the solution of smaller linear systems at each time step compared to Gauss RK. The second class of schemes are constructed such that they require the inversion of a unique linear system several times at each time step like the Singly Diagonally Runge‐Kutta (SDIRK) schemes. While the first class of schemes is constructed for an arbitrary order of accuracy, the second‐class schemes is given up to order 12. The performance assessment we provide shows a very good level of accuracy for both classes of schemes, and the great interest of considering high‐order time schemes that are faster. The diagonal Padé schemes seem to be more accurate and more robust.
Keywords:A‐stable Padé  and Runge‐Kutta schemes  high‐order implicit time integration  low‐dispersion and low‐dissipation schemes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号