首页 | 本学科首页   官方微博 | 高级检索  
     


Tb3Pd2, Er3Pd2 and Er6Co5–x: structural variations and bonding in rare‐earth‐richer binary intermetallics
Abstract:The three binary Tb/Er‐rich transition metal compounds Tb3Pd2 (triterbium dipalladium), Er3Pd2 (trierbium dipalladium) and Er6Co5–x (hexaerbium pentacobalt) crystallize in the space groups Pbam (Pearson symbol oP20), P4/mbm (tP10) and P63/m (hP22), respectively. Single crystals of Tb3Pd2 and Er6Co5–x suitable for X‐ray structure analysis were obtained using rare‐earth halides as a flux. Tb3Pd2 adopts its own structure type, which can be described as a superstructural derivative of the U3Si2 type, which is the type adopted by Er3Pd2. Compound Er6Co5–x belongs to the Ce6Co2–xSi3 family. All three compounds feature fused tricapped {TR6} (R = rare‐earth metal and T = transition metal) trigonal prismatic heterometallic clusters. R3Pd2 is reported to crystallize in the U3Si2 type; however, our more detailed structure analysis reveals that deviations occur with heavier R elements. Similarly, Er6Co5–x was assumed to be stoichiometric Er4Co3 = Er6Co4.5. Our studies reveal that it has a single defective transition‐metal site leading to the composition Er6Co4.72(2). LMTO (linear muffin‐tin orbital)‐based electronic structure calculations suggest the strong domination of heteroatomic bonding in all three structures.
Keywords:intermetallic compound  crystal structure  phase diagram  rare earth  binary system
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号