首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Preparation and properties of rare-earth-molybdenum(V) oxides Ln3MoO7
Institution:1. State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, PR China;2. Division of Functional Materials, Central Iron and Steel Research Institute, Beijing 100081, PR China;3. National Engineering Research Center for Rare Earth Materials, General Research Institute for Non-Ferrous Metals, and Grirem Advanced Materials Co. Ltd., Beijing 100088, PR China;4. Collaborative Innovation Center of Quantum Matter, Beijing 100871, PR China
Abstract:Phase equilibrium studies in Ln2O3MoO2MoO3 systems indicate, for a Ln2O3:Mo ratio of 3:2, the existence of a new molybdenum (V)-rare-earth oxide Ln3MoO7. Ternary oxides have been prepared for Ln ≡ La-Ho and Y. For Ln ≡ La-Eu, Ln3MoO7 compounds form at 1473 K under oxygen partial pressures ranging from 10−7.3 to 10−11.6 atm. For Ln ≡ Gd-Ho and Y compounds form above 1573 K and at 1473 K the stability range is about 10−9 to about 10−10 atm. Lattice parameters deduced from X-ray diffraction patterns are reported. For the large Ln cations, lanthanum to europium, all reflections could be indexed in an orthorhombic C-centred cell isotypic to Nd3NbO7. For Ln ≡ Gd-Ho and Y, strong f.c.c.-type reflections show that the structure is defect fluorite. Stability ranges in terms of oxygen partial pressure and crystal chemical properties are discussed with respect to the rare-earth elements. Magnetic susceptibility measurements of La3MoO7 confirm the oxidation state + 5 for molybdenum.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号