Characterization of iron catalysts prepared by chemical vapor deposition on nonzeolitic supports |
| |
Authors: | Henao Juan D Wen Bin Sachtler Wolfgang M H |
| |
Affiliation: | Center for Catalysis and Surface Science, Institute for Environmental Catalysis, Northwestern University, 2137 Tech Drive, Evanston, Illinois 60208, USA. |
| |
Abstract: | Chemical vapor deposition (CVD) of FeCl3 has been used to deposit Fe3+ ions on the surface of sulfated zirconia (SZ) and silica-alumina (SA). Upon exposure to FeCl3 vapor most Br?nsted acid sites and silanol groups are replaced by Fe, as evidenced by IR. With SZ the concentration of the acid sites and thus the retention of Fe increase with the sulfate loading up to approximately 45% of a monolayer, followed by an abrupt decrease at higher loadings. This indicates condensation of sulfate groups to polysulfates, which is in line with a lower number of Br?nsted sites per sulfate. Release of HCl due to the reaction of Br?nsted sites with FeCl3 peaks at 85 degrees C for SZ but only at 345 degrees C for SA. After replacing Cl- by OH- and calcining, the materials were tested as De-NOx catalysts and characterized by temperature-programmed reduction (TPR) with H2 or CO. Mononuclear and dinuclear oxo-ions of Fe coexist with Fe oxide particles in calcined Fe/SA, resulting in a low selectivity for NOx reduction. During reduction of Fe/SA up to 800 degrees C, a significant fraction of the Fe forms a chemical compound with SA, possibly an aluminate. In Fe/SZ the Fe dramatically increases the reducibility of the sulfate groups, from 57% partial reduction to SO2 in the absence of Fe, to 90% deep reduction to S2- ions in its presence. Formation of Fe sulfide is indicated by the enhanced sulfur retention upon reduction. Fe/SZ is active for NOx reduction with isobutane. Catalysts with low Fe content that are prepared by controlled sublimation are superior to those prepared by impregnation. At 450 degrees C and GHSV = 30,000 h(-1), 65% of NOx is reduced to N2 in excess O2. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|