首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The influence of vibronic interactions on the chiroptical spectra of dissymmetric pseudo tetragonal metal complexes
Authors:Frederick S Richardson  Gary Hilmes  Jacqueline J Jenkins
Institution:(1) Department of Chemistry, University of Virginia at Charlottesville, USA
Abstract:The influence of vibronic interactions on the chiroptical spectra associated with a threesome of nearly degenerate electronic excited states in a dissymmetric molecular system is examined on a formal theoretical model. The model considers two vibrational modes to be effective in promoting pseudo Jahn-Teller (PJT) type interactions between the three closely spaced electronic excited states. Formal expressions are developed for the rotatory strengths of individual vibronic levels derived from the coupled electronic states. Two mode (vibrational)-three state (electronic) vibronic Hamiltonians are constructed (basis set size, 63–108, depending upon interaction parameters used) and diagonalized for a large number of different parameter sets representative of various vibronic coupling strengths, electronic energy level spacings, oscillator (vibrational mode) frequencies, and electronic rotatory strengths. Diagonalization of these vibronic Hamiltonians yields vibronic wave functions and energies which are then used to calculate ldquorotatory strength spectrardquo for the model system. The calculated results demonstrate the profound influence which vibronic interactions of the PJT type may have on the sign patterns and intensity distributions within the rotatory strength spectrum associated with a set of nearly degenerate electronic states. The implication of these results for the interpretation of circular dichroism spectra of chiral transition metal complexes with pseudo tetragonal symmetry are discussed.
Keywords:Metal complexes  Chiroptical spectra  influence of vibronic interactions on sim" target="_blank">gif" alt="sim" align="MIDDLE" BORDER="0">
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号