首页 | 本学科首页   官方微博 | 高级检索  
     


A frictional mortar contact approach for the analysis of large inelastic deformation problems
Authors:T. Doca  F.M. Andrade Pires  J.M.A. Cesar de Sa
Affiliation:DEMEC – Departament of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Abstract:A multibody frictional mortar contact formulation (Gitterle et al., 2010) is extended for the simulation of solids undergoing finite strains with inelastic material behavior. The framework includes the modeling of finite strain inelastic deformation, the numerical treatment of frictional contact conditions and specific finite element technology. Several well-established and recent models are employed for each of these building blocks to capture the distinct physical aspects of the deformation behavior. The approach is based on a mortar formulation and the enforcement of contact constraints is realized with dual Lagrange multipliers. The introduction of nonlinear complementarity functions into the frictional contact conditions combined with the global equilibrium leads to a system of nonlinear equations, which is solved in terms of the semi-smooth Newton method. The resulting method can be interpreted as a primal–dual active set strategy (PDASS) which deals with contact nonlinearities, material and geometrical nonlinearities in one iterative scheme. The consistent linearization of all building blocks of the framework yields a robust and highly efficient approach for the analysis of metal forming problems. The effect of finite inelastic strains on the solution behavior of the PDASS method is examined in detail based on the complementarity parameters. A comprehensive set of numerical examples is presented to demonstrate the accuracy and efficiency of the approach against the traditional node-to-segment penalty contact formulation.
Keywords:Inelastic deformation   Finite strain   Dual Lagrange multipliers   Primal&ndash  dual active set strategy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号