首页 | 本学科首页   官方微博 | 高级检索  
     


Nonlocal elasticity defined by Eringen’s integral model: Introduction of a boundary layer method
Authors:R. Abdollahi  B. Boroomand
Affiliation:Department of Civil Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
Abstract:In this paper we consider a nonlocal elasticity theory defined by Eringen’s integral model and introduce, for the first time, a boundary layer method by presenting the exponential basis functions (EBFs) for such a class of problems. The EBFs, playing the role of the fundamental solutions, are found so that they satisfy the governing equations on an unbounded domain. Some insight to the theory is given by showing that the EBFs satisfying the Navier equations in the classical elasticity theory also satisfy the governing equations in the nonlocal theory. Some additional EBFs are particularly obtained for the nonlocal theory. In order to use the EBFs on bounded domains, the effects of the boundary conditions are taken into account by truncating the kernel/attenuation function in the constitutive equations. This leads to some residuals in the governing equations which appear near the boundaries. A weighted residual approach is employed to minimize the residuals near the boundaries. The method presented in this paper has much in common with Trefftz methods especially when the influence area of the kernel function is much smaller than the main computational domain. Several one/two dimensional problems are solved to demonstrate the way in which the EBFs can be used through the proposed boundary layer method.
Keywords:Nonlocal elasticity   Eringen&rsquo  s integral   Exponential basis functions   Trefftz method   Fundamental solutions   Boundary layer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号