首页 | 本学科首页   官方微博 | 高级检索  
     


New double graded structure for enhanced performance in white organic light emitting diode
Authors:Peng Yu Chen  Meiso Yokoyama
Affiliation:a Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan, Republic of China
b Department of Electronic Engineering, I-Shou University, Kaohsiung County, Taiwan, Republic of China
Abstract:This study presents a new design that uses a combination of a graded hole transport layer (GH) structure and a gradually doped emissive layer (GE) structure as a double graded (DG) structure to improve the electrical and optical performance of white organic light-emitting diodes (WOLEDs). The proposed structure is ITO/m-MTDATA (15 nm)/NPB (15 nm)/NPB: 25% BAlq (15 nm)/NPB: 50% BAlq (15 nm)/BAlq: 0.5% Rubrene (10 nm)/BAlq: 1% Rubrene (10 nm)/BAlq: 1.5% Rubrene (10 nm)/Alq3 (20 nm)/LiF (0.5 nm)/Al (200 nm). (m-MTDATA: 4,4′,4″ -tris(3-methylphenylphenylamino)triphenylamine; NPB: N,N′-diphenyl-N,N′-bis(1-naphthyl-phenyl)-(1,1′-biphenyl)-4,4′-diamine; BAlq: aluminum (III) bis(2-methyl-8-quinolinato) 4-phenylphenolate; Rubrene: 5,6,11,12-tetraphenylnaphthacene; Alq3: tris-(8-hydroxyquinoline) aluminum). By using this structure, the best performance of the WOLED is obtained at a luminous efficiency at 11.8 cd/A and the turn-on voltage of 100 cd/m2 at 4.6 V. The DG structure can eliminate the discrete interface, and degrade surplus holes, the electron-hole pairs are efficiently injected and balanced recombination in the emissive layer, thus the spectra are unchanged under various drive currents and quenching effects can be significantly suppressed. Those advantages can enhance efficiency and are immune to drive current density variations.
Keywords:Graded structure   Vacuum deposition   Organic light-emitting diode
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号