首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation,characterization, and properties of nanofibers based on poly(vinylidene fluoride) and polyhedral oligomeric silsesquioxane
Authors:Erika Simona Cozza  Orietta Monticelli  Ornella Cavalleri  Enrico Marsano
Affiliation:1. Dipartimento di Chimica e Chimica Industriale, Università di Genova, , 16146 Genova, Italy;2. Dipartimento di Fisica, Università di Genova, , 16146 Genova, Italy
Abstract:Nanostructered nanofibers based on poly(vinylidene fluoride) (PVDF) and polyhedral oligomeric silsesquioxane (POSS) have been prepared by electrospinning process. The starting solutions were prepared by dissolving both the system components in the mixture N,N‐dimethylacetamide/acetone. The characteristics of the fiber prepared, studied by scanning electron microscopy, atomic force microscopy, and wide angle X‐ray diffraction, have been compared with those of PVDF fibers. Morphological characterization has demonstrated the possibility to obtain defect‐free PVDF/POSS nanofibers by properly choosing the electrospinning conditions, such as voltage, polymer concentration, humidity, etc. Conversely, in the case of fibers based on the neat polymer, it was not possible to attain the complete elimination of beads in the electrospun nanofibers. The different behavior of the two types of solutions has been ascribed to silsesquioxane molecules, which, without influencing the solution viscosity or conductivity, favor the formation of uniform structures by decreasing the system surface tension. Concerning POSS distribution in the fibers, the morphological characterization of the electrospun films has shown a submicrometric dispersion of the silsesquioxane. It is relevant to underline that cast films, prepared by the same solutions, have been found to be characterized by POSS aggregation, thus demonstrating a scarce affinity between the two‐system components. Indeed, the peculiar solvent evaporation of the electrospun solution, which is much faster than that occurring during the cast process, prevents POSS aggregation, thus leading to the formation of nanofibers characterized by a silsesquioxane dispersion similar to that present in solution. Finally, the presence of POSS improves the electrospun film mechanical properties. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:electrospinning  nanofibers  POSS  nanocomposites
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号