首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A penalty method for numerically handling dispersive equations with incompatible initial and boundary data
Authors:Natasha Flyer  Zhen Qin  Roger Temam
Institution:1. Institute for Mathematics Applied to Geosciences (IMAGe), NCAR, Boulder, Colorado 80305;2. Institute for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, Indiana 47405
Abstract:This article is the numerical counterpart of a theoretical work in progress Qin and Teman, Applicable Anal (2011), 1–19, related to the approximation of evolution hyperbolic equations with incompatible data. The Korteweg‐de Vries and Schrödinger equations with incompatible initial and boundary data are considered here. For hyperbolic equations, the lack of regularity (compatibility) is known to produce large numerical errors which propagate throughout the spatial domain, destroying convergence. In this article, we numerically test the effectiveness of the penalty‐based method proposed in Qin and Teman, Applicable Anal (2011), 1–19, which replaces the hyperbolic equations with incompatible data by a system with compatible data. We observe that convergence is increased. As explained in the text, in the case of the Schrödinger equation, the impact of incompatible (nonregular) data is most severe, and the authors are not aware of any other method that can handle such severe incompatible data. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2011
Keywords:hyperbolic systems  incompatible date  numerical simulations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号