首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Energy spectra of 6–32 keV neutral and ionized Ar and He scattered from Au targets; ionized fractions as functions of energy
Authors:TM Buck  Y-S Chen  GH Wheatley  WF Van Der Weg
Institution:Bell Laboratories, Murray Hill, New Jersey 07974, U.S.A.;N.V. Philips Research Laboratories, Dept. Amsterdam, The Netherlands
Abstract:The neutralization of ions is an important aspect of low energy ion scattering for surface analysis. Electrostatic energy analyzers (ESA) have been used almost exclusively in such work, and information on charge neutralization efficiencies is needed for quantitative interpretation of ESA data. In the past, the occurrence in low energy ion spectra of surface peaks and low backgrounds due to scattering from inside the solid has been attributed to preferential neutralization of ions which penetrate beyond the surface. In the work to be described, a time-of-flight technique was used to measure energy spectra of both neutral and ionized Ar and He scattered at 90° from a polycrystalline gold target. Incident energies of 6–32 keV were used. The energy spectra of neutral Ar scattered from polycrystalline gold exhibit sharp surface peaks, and double scattering shoulders, over this entire energy range. For He there is a gradual downward slope toward lower energy rather than a sharp surface peak. The behavior in both cases is attributed to large scattering cross-sections which cause a loss of beam particles during penetration. A calculation using a 1r2 potential illustrates this effect as a function of energy for helium. In the present experiments we find that the ion fraction of scattered argon does indeed depend on depth of penetration. This is in contrast to the behavior of He and H at higher energies, e.g. 100 keV, in which cases the charge state depends on emergent velocity but not on depth of penetration. The characteristic shapes of ion scattering spectra in this energy range appear to result from both neutralization and beam attenuation inside the target.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号