首页 | 本学科首页   官方微博 | 高级检索  
     


Oxygen adsorption on clean Mo (100) surfaces
Authors:R. Riwan  C. Guillot  J. Paigne
Affiliation:Service de Physique Atomique, Centre d''Etudes Nucléaires de Saclay, B.P. No. 2, 91190 Gif-sur-Yvette, France
Abstract:Oxygen adsorption on clean Mo (100) surfaces has been studied by LEED, AES, work function changes and energy loss spectroscopy. At room temperature, the oxygen uptake as determined by AES is linear up to one third of the saturation value. Data obtained with CO adsorption have been used to determine the oxygen coverage. With increasing oxygen exposure LEED shows three stages: a c (2 × 2) phase growing simultaneously with a (6 × 2) structure, a stage with (110) microfacets covered by two-dimensional structures and finally a p (3×1) structure together with a p (1×1) structure, probably due to an oxide phase. Even in the low temperature range (370–500 K) remarkable effects are observed: adsorption at 370 K produces a disordered c (4×4) structure which is followed by a (√5 × √5)?R 26° 33 structure. The same occurs when the inital c (2 × 2) structure formed at 295 K is heated above 370 K. Measurements of the work function indicate a minimum at the end of the c (2×2) structure, then a rapid increase and at saturation a value of about 1.5 V above that of the clean surface. Energy loss spectroscopy measurements point to an increase of the surface plasmon energy during the faceting stage. New transitions are observed which are due to new electronic levels induced by the adsorption. They are comparable with photoemission results on W and Mo.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号