首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mesophilic Acidogenesis of Food Waste-Recycling Wastewater: Effects of Hydraulic Retention Time,pH, and Temperature
Authors:Gyuseong Han  Seung Gu Shin  Joonyeob Lee  Changsoo Lee  Minho Jo  Seokhwan Hwang
Institution:1.School of Environmental Science and Engineering,Pohang University of Science and Technology (POSTECH),Pohang,Republic of Korea;2.School of Urban and Environmental Engineering,Ulsan National Institute of Science and Technology (UNIST),Ulsan,Republic of Korea;3.Steel Business Division, POSCO,Seoul,Republic of Korea
Abstract:The effects of hydraulic retention time (HRT), pH, and operating temperature (T OP) on the degradation of food waste-recycling wastewater (FRW) were investigated in laboratory-scale hydrolysis/acidogenesis reactors. Response surface analysis was used to approximate the production of volatile organic acids and degradation of volatile suspended solids (VSS), carbohydrate, protein, and lipid with regard to the independent variables (1?≤?HRT?≤?3 days, 4?≤?pH?≤?6, 25?≤?T OP?≤?45 °C). Partial cubic models adequately approximated the corresponding response surfaces at α?<?5 %. The physiological conditions for maximum acidification (0.4 g TVFA?+?EtOH/g VSadded) and the maximal degradation of VSS (47.5 %), carbohydrate (92.0 %), protein (17.7 %), and lipid (73.7 %) were different. Analysis of variance suggested that pH had a great effect on the responses in most cases, while T OP and HRT, and their interaction, were significant in some cases. Denaturing gradient gel electrophoresis analysis revealed that Sporanaerobacter acetigenes, Lactobacillus sp., and Eubacterium pyruvivorans-like microorganisms might be main contributors to the hydrolysis and acidogenesis of FRW. Biochemical methane potential test confirmed higher methane yield (538.2 mL CH4/g VSadded) from an acidogenic effluent than from raw FRW.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号