首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Efficacy of clay content and microstructure of curing agents on the structure–property relationship of new‐generation polyurethane nanocomposites
Authors:Pradip K Maji  Anil K Bhowmick
Institution:1. Rubber Technology Centre, Indian Institute of Technology, , Kharagpur, 721302 India;2. Indian Institute of Technology, , Patna, 800013 India
Abstract:The physicomechanical properties of new polyurethanes (PUs) derived from toluene diisocyanate, poly(propylene glycol), and cured by third‐generation hyperbranched polyester polyol (HB3), trimethylolpropane (TMP), or glycerol and their nanocomposites have been investigated. An apparent microphase‐segregated morphology of PU nanocomposites cured by HB3 has been observed by transmission electron microscopy and atomic force microscopy. Morphological studies reveal regions of mostly exfoliated and some intercalated morphology in the case of the nanocomposites, which have been further ascertained by X‐ray diffraction analysis. The HB3‐cured PU nanocomposite containing 8 wt% of modified montmorillonite (Cloisite 30B) clay shows approximately 140% increase in tensile strength along with improvement in thermal and dynamic mechanical properties in comparison with the control hyperbranched PU. It has also been found from Fourier transform infrared spectroscopy analysis that the extent of tethering reactions between the polymer chains carrying residual –NCO groups and the reactive hydroxyl (?OH) groups of HB3 is significant, and the nanofiller has been found to preferentially react with the –NCO group of the prepolymer. Furthermore, the properties of HB3‐cured PU have been compared with the glycerol and TMP‐cured PUs and their nanocomposites. The physicomechanical and thermal properties for nanocomposites of HB3‐cured PUs are superior to those of the conventionally cured PUs. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:polyurethane  nanocomposite  hyperbranched polyester polymer  cross‐linking  morphology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号