首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Determination of the surface composition of palladium-nickel alloy film catalysts using Auger electron spectroscopy
Authors:CTH Stoddart  RL Moss  D Pope
Institution:Department of Industry, National Physical Laboratory, Teddington, Middlesex TW11, OLW, England;Department of Industry, Warren Spring Laboratory, Stevenage, Hertfordshire SG1 2BX, England
Abstract:Palladium-nickel films evaporated in UHV on room temperature substrates form alloys of good bulk homogeneity as indicated by X-ray diffraction. The average composition of the outermost 3 to 5 atom layers has been determined from the intensities of the high energy 848 eV nickel and 330 eV palladium Auger electrons. This average composition is in close agreement with the bulk composition determined by X-ray diffraction, X-ray fluorescence and atomic absorption spectrophotometry. If the nickel concentration is determined from the intensity of the low energy 61 eV nickel Auger electrons, when the analysis refers more critically to the first 1 to 3 atom layers, then a surface enrichment of palladium is indicated for all alloy compositions. From the decrease in the relative intensities of the low energy and high energy nickel Auger electrons with increasing palladium concentration it may be deduced that the enrichment of palladium in the first atom layer is higher than in the second and third layers and that a complete monolayer of palladium is formed for bulk concentrations of 65 at% or more. The experimental observations are in qualitative agreement with theoretical predictions of surface composition from bulk thermodynamic data. The palladium-nickel alloys form a range of surface compositions which can be controlled by changing the bulk composition and which are useful for studying catalytic activity as a function of composition. The alloy films are stable under electron irradiation in the AES analysis in UHV but air exposed films analysed in a residual pressure of 1.3 microPa water vapour show a decrease in palladium surface concentration on irradiation indicating a diffusion of nickel to the surface to form an overlayer of nickel oxide.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号