首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Imaging Molecular Orbitals of Single Picene Molecules Adsorbed on Cu(111) Surface: a Combined Experimental and Theoretical Study
Authors:Chun-sheng Zhou  Huan Shan  Bin Li  Ai-di Zhao
Abstract:Picene, which attracts the great interest of researchers, not only can be used to fabricate thin film transistors with high hole mobilities, but also is the parent material of a new type organic superconductor. Here, we investigate the electronic properties of individual picene molecules directly adsorbed on Cu(111) surface by a combination of experimental scanning tunneling microscopy/spectroscopy measurements and theoretical calculations based on the density functional theory. At low coverage, the picene molecules exhibit mono-dispersed adsorption behavior with the benzene ring planes parallel to the surface. The highest occupied state around-1.2 V and the lowest unoccupied state around 1.6 V with an obvious energy gap of the singly adsorbed picene molecule are identified by the dI/dV spectra and maps. In addition, we observe the strong dependence of the dI/dV signal of the unoccupied states on the intramolecular positions. Our first-principles calculations reproduce the above experimental results and interpret them as a specific molecule-substrate interaction and energy/spatial distributions of hybrid states mainly derived from different molecular orbitals of picene with some intermixing between them. This work provides direct information on the local electronic structure of individual picene on a metallic substrate and will facilitate the understanding the dependence of electron transport properties on the coupling between molecules and metal electrodes in single-molecule devices.
Keywords:Scanning tunneling microscopy  Picene  Molecular orbitals  Density functional theory
点击此处可从《化学物理学报(中文版)》浏览原始摘要信息
点击此处可从《化学物理学报(中文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号