首页 | 本学科首页   官方微博 | 高级检索  
     检索      


First-Principles Study of Magnetism in Transition Metal Doped Na0.5Bi0.5TiO3 System
Authors:Lin Ju  Tong-shuai Xu  Yong-jia Zhang  Li Sun
Institution:1.School of Physics and Electric Engineering, Anyang Normal University, Anyang 455000, China2.Department of Physics, Taiyuan University of Technology, Taiyuan 030024, China
Abstract:The origins of magnetism in transition-metal doped Na0.5Bi0.5TiO3 system are investigated by ab initio calculations. The calculated results indicate that a transition-metal atom substitution for a Ti atom produces magnetic moments, which are due to the spin-polarization of transition-metal 3d electrons. The characteristics of exchange coupling are also calculated, which shows that in Cr-/Mn-/Fe-/Co-doped Na0.5Bi0.5TiO3 system, the antiferromagnetic coupling is favorable. The results can successfully explain the experimental phenomenon that, in Mn-/Fe-doped Na0.5Bi0.5TiO3 system, the ferromagnetism disappears at low temperature and the paramagnetic component becomes stronger with the increase of doping concentration of Mn/Fe/Co ions. Unexpectedly, we find the Na0.5Bi0.5Ti0.67V0.33iO3 system with ferromagnetic coupling is favorable and produces a magnetic moment of 2.00 μB, which indicates that low temperature ferromagnetism materials could be made by introducing V atoms in Na0.5Bi0.5TiO3. This may be a new way to produce low temperature multiferroic materials.
Keywords:Transition-metal atom  Substitution  Magnetic moment  First-principles calculation
点击此处可从《化学物理学报(中文版)》浏览原始摘要信息
点击此处可从《化学物理学报(中文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号