首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simultaneous benchmarking of ground- and excited-state properties with long-range-corrected density functional theory
Authors:Rohrdanz Mary A  Herbert John M
Institution:Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA.
Abstract:We present benchmark calculations using several long-range-corrected (LRC) density functionals, in which Hartree-Fock exchange is incorporated asymptotically using a range-separated Coulomb operator, while local exchange is attenuated using an ansatz introduced by Iikura et al. J. Chem. Phys. 115, 3540 (2001)]. We calculate ground-state atomization energies, reaction barriers, ionization energies, and electron affinities, each as a function of the range-separation parameter mu. In addition, we calculate excitation energies of small- and medium-sized molecules, again as a function of mu, by applying the LRC to time-dependent density functional theory. Representative examples of both pure and hybrid density functionals are tested. On the basis of these results, there does not appear to be a single range-separation parameter that is reasonable for both ground-state properties and vertical excitation energies. Reasonable errors in atomization energies and barrier heights are achieved only at the expense of excessively high excitation energies, at least for the medium-sized molecules, whereas values of mu that afford reasonable excitation energies yield some of the largest errors for ground-state atomization energies and barrier heights in small molecules. Notably, this conclusion is obscured if the database of excitation energies includes only small molecules, as has been the case in previous benchmark studies of LRC functionals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号