首页 | 本学科首页   官方微博 | 高级检索  
     


Directed evolution of 2-keto-3-deoxy-6-phosphogalactonate aldolase to replace 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthase
Authors:Ran Ningqing  Frost John W
Affiliation:Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.
Abstract:Directed evolution of 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolase for microbial synthesis of shikimate pathway products provides an alternate strategy to circumvent the competition for phosphoenolpyruvate between 3-deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP) synthase and the phosphoenolpyruvate:carbohydrate phosphotransferase system in Escherichia coli. E. coli KDPGal aldolase was evolved using a combination of error-prone polymerase chain reaction, DNA shuffling, and multiple-site-directed mutagenesis to afford KDPGal aldolase variant NR8.276-2, which exhibits a 60-fold improvement in the ratio kcat/KM relative to that of wild-type E. coli KDPGal aldolase in catalyzing the addition of pyruvate to d-erythrose 4-phosphate to form DAHP. On the basis of its nucleotide sequence, NR8.276-2 contains seven amino acid changes from the wild-type E. coli KDPGal aldolase. Amplified expression of NR8.276-2 in the DAHP synthase and shikimate dehydrogenase-deficient E. coli strain NR7 under fed-batch fermentor-controlled cultivation conditions resulted in synthesis of 13 g/L 3-dehydroshikimic acid in 6.5% molar yield from glucose. Increased coexpression of the irreversible downstream enzyme 3-dehydroquinate synthase increased production of 3-dehydroshikimic acid to 19 g/L in 9.7% molar yield from glucose. Coamplification with transketolase, which increases d-erythrose 4-phosphate availability, afforded 16 g/L 3-dehydroshikimic acid in 8.5% molar yield.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号