首页 | 本学科首页   官方微博 | 高级检索  
     


Interaction of catechol and gallic acid with titanium dioxide in aqueous suspensions. 1. Equilibrium studies
Authors:Araujo Paula Z  Morando Pedro J  Blesa Miguel A
Affiliation:Unidad de Actividad Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, 1650 San Martín, Provincia de Buenos Aires, Argentina.
Abstract:The adsorption isotherms of catechol (1,2-dihydroxybenzene) and gallic acid (3,4,5-trihydroxybenzoic acid) onto titanium dioxide (Degussa P-25) were measured at various pH values and room temperature using attenuated total reflection Fourier transform infrared (FTIR-ATR) data, processed by singular value decomposition. The affinity is largely pH independent, although the deprotonatation of the carboxylic group in gallic acid might produce a slight increase in the affinity. Catechol was shown to form two complexes, with Langmuir stability constants log K of 4.66 (strong mode) and 3.65 (weak mode). Both complexes have the same spectral signature, and mononuclear and binuclear chelate structures are proposed for them. Gallic acid chemisorbs by complexation through two -OH groups and forms one complex only, log K = 4.70. The third -OH and the pendant carboxylate do not influence much the stability of the surface complex. Comparison with literature data demonstrates that the affinity of 4-chlorocatechol is also similar, whereas 2,3-dihidroxynaphthalene and 4-nitrocatechol form more stable complexes, probably because of the solvation contribution to the overall Gibbs adsorption energy. All quoted constants refer to the surface complexation equilibria written as follows: ([triple bond]Ti-OH)2 + H2L = ([triple bond]Ti)2-L + 2H2O, i.e., as electroneutral processes. The FTIR-ATR spectra of the surface complexes are also discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号