X-band Electron Spin Relaxation Times for Four Aromatic Radicals in Fluid Solution and Comparison with Other Organic Radicals |
| |
Authors: | Virginia Meyer Sandra S. Eaton Gareth R. Eaton |
| |
Affiliation: | 1. Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208, USA
|
| |
Abstract: | X-band electron spin relaxation times of BDPA (1:1 α,γ-bisdiphenylene-β-phenylallyl), galvinoxyl 2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy, DPPH (2,2-diphenyl-1-picrylhydrazyl) and thianthrene radicals in fluid solution were measured by electron spin echo and inversion recovery at ambient temperature. Tumbling correlation times are estimated to be in the range of 20–30 ps. In this fast tumbling regime T 1 ~ T 2. Relaxation times are compared with previously reported values for symmetrically substituted triarylmethyl, semiquinone, and nitroxide radicals. The concentration dependence of spin lattice relaxation for neutral BDPA in toluene is about 103 times greater than for anionic trityl radicals in water. T 1 decreases in the order carbon-center BDPA > galvinoxyl > DPPH > thianthrene. The dominant relaxation mechanisms are proposed to be a local mode for BDPA, spin rotation, local mode and modulation of anisotropic proton hyperfine coupling for galvinoxyl, modulation of anisotropic nitrogen hyperfine for DPPH, and spin rotation plus modulation of anisotropic proton hyperfine coupling for thianthrene. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|