首页 | 本学科首页   官方微博 | 高级检索  
     


Temperature (over)compensation in an oscillatory surface reaction
Authors:Nagao Raphael  Epstein Irving R  Gonzalez Ernesto R  Varela Hamilton
Affiliation:Instituto de Química de S?o Carlos, Universidade de S?o Paulo, C.P. 780, CEP 13560-970, S?o Carlos - SP, Brasil, and Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110.
Abstract:Biological rhythms are regulated by homeostatic mechanisms that assure that physiological clocks function reliably independent of temperature changes in the environment. Temperature compensation, the independence of the oscillatory period on temperature, is known to play a central role in many biological rhythms, but it is rather rare in chemical oscillators. We study the influence of temperature on the oscillatory dynamics during the catalytic oxidation of formic acid on a polycrystalline platinum electrode. The experiments are performed at five temperatures from 5 to 25 °C, and the oscillations are studied under galvanostatic control. Under oscillatory conditions, only non-Arrhenius behavior is observed. Overcompensation with temperature coefficient (q(10), defined as the ratio between the rate constants at temperature T + 10 °C and at T) < 1 is found in most cases, except that temperature compensation with q(10) ≈ 1 predominates at high applied currents. The behavior of the period and the amplitude result from a complex interplay between temperature and applied current or, equivalently, the distance from thermodynamic equilibrium. High, positive apparent activation energies were obtained under voltammetric, nonoscillatory conditions, which implies that the non-Arrhenius behavior observed under oscillatory conditions results from the interplay among reaction steps rather than from a weak temperature dependence of the individual steps.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号