首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oxide ion transport in highly defective cubic stabilized zirconias
Authors:J T S Irvine  I R Gibson  D P Fagg
Institution:(1) School of Chemistry, University of St.Andrews, KY16 9ST St.Andrews, Fife;(2) Department of Chemistry, Aberdeen University, Meston Walk, AB9 2UE Aberdeen
Abstract:Ac impedance spectroscopy and neutron powder diffraction have been used to study the high temperature behaviour of defective fluorite solid electrolytes. In yttria-stabilised zirconia with an yttrium content of 15 mol% YO1.5 there is a marked change in conductivity behaviour at around 650 °C, with a decrease in activation energy of 0.15 eV. Structural studies confirm that this is due to a change in the bulk of the sample with the disappearance of diffuse scattering peaks and marked changes in the behaviour of the isotropic temperature factors at the same temperature. These results indicate that the change in activation energy of yttria-stabilised zirconia at 650 °C is due to an order-disorder transition involving local defect clusters. In studies of zirconia co-doped with yttrium and niobium, activation energy for conduction is found to rapidly increase with the concentration of the trivalent yttrium Saturation doping is reached at about 20–30 % of yttrium and activation energy only increases slightly with doping. Introduction of pentavalent niobium at this level of doping serves to decrease activation energy, although it also decreases conductivity slightly. The low and high temperature activation energies converge as the saturation regime is approached. These observations seem to suggest that ordering of defect clusters into microdomains increases activation energy for ionic motion. At low defect concentrations and high temperatures, this local ordering breaks down and the activation energy for conduction decreases. Paper presented at the 2nd Euroconference on Solid State Ionics, Funchal, Madeira, Portugal, Sept. 10–16, 1995
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号