首页 | 本学科首页   官方微博 | 高级检索  
     


Reversing a rotaxane recognition motif: threading oligoethylene glycol derivatives through a dicationic cyclophane
Authors:Chiu Sheng-Hsien  Stoddart J Fraser
Affiliation:Department of Chemistry and Biochemistry, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095-1569, USA.
Abstract:An already well-established recognition motif-namely one in which the NH2+ centers in the rod sections of the dumbbell components of rotaxanes are encircled by macrocyclic polyether components-has been turned simultaneously outside-in and inside-out, a fact that has been proved beyond any doubt by the stoppering of both ends of a [2]pseudorotaxane to give a stable [2]rotaxane. The [2]pseudorotaxane is formed in nitromethane when a benzylic dibromide, obtained after reacting an excess of 1,4-bis(bromomethyl)benzene with hexaethylene glycol, is added to an equimolar amount of a dicationic cyclophane in which two -CH2OCH2- chains link a pair of dibenzylammonium ions through the para positions on their phenyl rings. When the [2]pseudorotaxane is reacted in nitromethane with triphenylphosphine, a [2]rotaxane and the corresponding free dumbbell compound are isolated in 58 and 31% yields, respectively. The structure of the [2]rotaxane is established by using mass spectrometry (FABMS and ESMS) and NMR (1H and 13C) spectroscopy in nitromethane-d3. The [2]rotaxane exhibits quite dramatic changes in the 1H chemical shifts of the signals for its CH2N+ and CH2O protons compared with those in the free dumbbell compound. The 1H NMR spectrum of the [2]pseudorotaxane shows many similar features. Titration experiments with three of the six different CH2O probes give an average Ka value of 2900 +/- 750 M-1 in nitromethane-d3. The new recognition motif for the template-directed synthesis of rotaxanes can now be exploited at both the molecular and macromolecular levels of structure with numerous potential applications in sight.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号