首页 | 本学科首页   官方微博 | 高级检索  
     


Wheel-shaped Mn16 single-molecule magnets
Authors:Shah Sonali J  Ramsey Christopher M  Heroux Katie J  O'Brien James R  DiPasquale Antonio G  Rheingold Arnold L  del Barco Enrique  Hendrickson David N
Affiliation:Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, USA.
Abstract:The syntheses, structures, and magnetic properties of two new single-stranded hexadecanuclear manganese wheels [Mn16(CH3COO)8(CH3CH2CH2COO)8(teaH)12] x 10 MeCN (1 x 10 MeCN) and [Mn16((CH3)2CHCOO)16(teaH)12] x 4 CHCl3 (2 x 4 CHCl3), where teaH(2-) is the dianion of triethanolamine, are reported. 1 crystallizes in the tetragonal I4(1)/a space group [a = b = 33.519(4) A and c = 16.659(2) A]. 2 crystallizes in the monoclinic C2/c space group [a = 21.473(5), b = 26.819(6), c = 35.186(7), and beta = 93.447(5) degrees]. Both complexes consist of 8 Mn(II) and 8 Mn(III) ions alternating in a wheel-shaped topology with 12 monoprotonated triethanolamine ligands. Variable-temperature direct current (DC) magnetic susceptibility data were collected in 1 T, 0.1 and 0.01 T fields, and in the 1.8-300 K temperature range for 1 and 2. Variable-temperature variable-field DC magnetic susceptibility data were obtained in the 1.8-10 K and 0.1-5 T ranges and least-squares fitting of these reduced magnetization versus H/T data indicates a S = 13 ground-state for 1 and 2. Single-crystal magnetization hysteresis measurements were performed in a 0.04-1 K temperature range for complex 2. Hysteresis loops were observed that showed a temperature dependence, which indicates that 2 exhibits magnetization relaxation and is a SMM. Both 1 and 2 show frequency-dependent out-of-phase signals in the AC susceptibility measurements, collected in a temperature range of 1.8-5 K and in the frequency range of 50-10,000 Hz. Extrapolation of the in-phase component of the AC susceptibility data to 0 K indicates an S = 12 ground state for 1 and an S = 11 ground-state for 2. Complex 1 has the highest-spin ground state reported to date for a single-stranded manganese wheel and is likely to be an SMM based on a frequency-dependent out-of-phase signal in the AC susceptibility. The AC susceptibility as well as magnetization hysteresis data for 2 confirm that this species is an SMM.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号