首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analysis and Optimization of the Energy Efficiency in the 802.11 DCF
Authors:Xiaodong Wang  Jun Yin  Dharma P Agrawal
Institution:(1) Center of Distributed and Mobile Computing, Department of Electrical and Computer Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 45221-0030, USA
Abstract:This paper introduces an analytical model to investigate the energy efficiency of the IEEE 802.11 distributed coordinated function (DCF). This model not only accounts for the number of contending nodes, the contention window, but also the packet size, and the channel condition. Based on this model, we identify the tradeoff in choosing optimum parameters to optimize the energy efficiency of DCF in the error-prone environment. The effects of contention window and packet size on the energy efficiency are examined and compared for both DCF basic scheme and DCF with four-way handshaking. The maximum energy efficiency can be obtained by combining both the optimal packet size and optimal contention window. To validate our analysis, we have done extensive simulations in ns-2, and simulation results seem to match well with the presented analytical results. The Ohio Board of Regents Doctoral Enhancements Funds and the National Science Foundation under Grant CCR 0113361 have supported this work. Xiaodong Wang received his B.S. degree in communication engineering from Beijing Information Technical Institute of China in 1995, and his M.S. degree in electric engineering from Beijing University of Aeronautics and Astronautics of China in 1998. He joined China Telecom in 1998 where he worked on communication protocols for telecommunication. From June 2000 to July 2002, he worked on GSM base station software development at Bell-labs China, Beijing, China. Currently he is a Ph.D. student in Computer Engineering at University of Cincinnati. His research activities include wireless MAC protocols, energy saving for wireless sensor networks. He is a student member of the IEEE. Jun Yin received the BS degree in automatic control from Dalian Railway Institute of China in 1997, and the MS degree in flight control from Beijing University of Aeronautics and Astronautics of China in 2001. Since 2001 she has been a Ph.D. student in the OBR Research Center for Distributed and Mobile Computing at the University of Cincinnati. Her research interests include performance evaluation of 802.11 MAC protocol, wireless ad hoc networks and sensor networks. She is a student member of the IEEE. Dharma P.Agrawal IEEE Fellow, 1987; ACM Fellow, 1998; AAAS Fellow, 2003 Dr. Agrawal is the Ohio Board of Regents Distinguished Professor of Computer Science and Computer Engineering in the department of Electrical and Computer Engineering and Computer Science, University of Cincinnati, OH. He has been a faculty member at Wayne State University, (1977–1982) and North Carolina State University (1982–1998). He has been a consultant to the General Dynamics Land Systems Division, Battelle, Inc., and the U. S. Army. He has held visiting appointment at AIRMICS, Atlanta, GA, and the AT&T Advanced Communications Laboratory, Whippany, NJ. He has published a number of papers in the areas of Parallel System Architecture, Multi computer Networks, Routing Techniques, Parallelism Detection and Scheduling Techniques, Reliability of Real-Time Distributed Systems, Modeling of C-MOS Circuits, and Computer Arithmetic. His recent research interest includes energy efficient routing, information retrieval, and secured communication in ad hoc and sensor networks, effective handoff handling and multicasting in integrated wireless networks, interference analysis in piconets and routing in scatternet, use of smart directional antennas (multibeam) for enhanced QoS, Scheduling of periodic real-time applications and automatic load balancing in heterogeneous workstation environment. He has four approved patents and three patent filings in the area of wireless cellular networks.
Keywords:802  11 DCF  contention window  energy efficiency  performance optimization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号