首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improvement of confocal microscope performance by shaped annular beam and heterodyne confocal techniques
Authors:Weiqian Zhao  Jiubin Tan  Lirong Qiu
Institution:Super-precision Optoelectronic Instrumentation Engineering Center, Harbin Institute of Technology, P.O. Box 718, Harbin 150001, PR China
Abstract:In order to further improve the performance of a confocal microscope (CM) used for measurement of surface profiles and 3D microstructures, a shaped annular beam heterodyne confocal measurement method based on annular pupil filter technique and reflection confocal microscopy, is proposed to expand the measurement range and to improve the defocused property of CM. The approach proposed uses a confocal dual-receiving light path arrangement and a heterodyne subtraction of two signals received from detectors with axial offset to enable CM to be used for bipolar absolute measurement and to improve the defocused property of CM, and it uses the annular pupil filter technique to produce a binary optical shaped annular beam, which expands the measurement range by expanding the full-width at half-maximum of intensity curve received from two detectors in a heterodyne confocal microscopy system. Theoretical analyses and experimental results indicate that a shaped annular beam heterodyne microscope has a measurement range expanded from 4 to 14 μm, achieved an axial resolution of 2 nm and improved the defocused property, when ε=0.5 and NA=0.65. It can be therefore concluded that the shaped annular beam heterodyne confocal measuring method proposed is a new approach to ultraprecision measurement of surface profiles and 3D microstructures.
Keywords:Confocal microscope  Annular pupil filter technique  Measurement range  Binary optical shaping  Superresolution measurement
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号