首页 | 本学科首页   官方微博 | 高级检索  
     


Time dependent flow in equimolar micellar solutions: transient behaviour of the shear stress and first normal stress difference in shear induced structures coupled with flow instabilities
Authors:Peter Fischer
Affiliation:ETH Zürich, Universit?tstrasse 2 8092 Zürich, Switzerland e-mail: peter.fischer@ilw.agrl.ethz.ch, CH
Abstract:Recently we studied time dependent structural changes that are coupled with flow instabilities (Fischer 1998; Wheeler 1998; Fischer 2000). Within a stability analysis, a classification scheme for the feedback circuit of coupled shear-induced structure and flow instabilities was derived by Schmitt et al. (1995) and applied to our samples. Here, inhomogeneous flow layers of different concentration and viscosity are generated by shear-induced diffusion (spinodal demixing) and, as consequence, one no longer observes a homogeneous solution but a type of shear banding that is seen here for the first time. In this paper we present the behaviour of the first normal stress difference observed in the critical shear-rate regime where transient shear-induced structure is coupled with flow instability. Similar to the oscillations of the shear stresses (strain-controlled rheometer) one observes oscillations in the first normal stress difference. This behaviour indicates that elastic structures are built up and destroyed while the shear-induced structures occur and that the induced phase is more elastic than the initial one. Oscillations of shear stress and first normal stress difference are in phase and indicate that both phenomena are caused by the same mechanism. Received: 30 June 1999/Accepted: 14 December 1999
Keywords:  Viscoelastic surfactant solution  Shear induced structure  Flow instabilities  First normal stress difference
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号