首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Study of ionic motion in salts of the type (NH4)2MX6 by NMR relaxation
Authors:JH Strange
Institution:The Physics Laboratories, University of Kent, Canterbury, England; Laboratorio Spettroscopia Molecolare, Universita di Cagliari, Italy
Abstract:The proton spin-lattice relaxation time in the laboratory frame, T1, and rotating frame T for polycrystalline cubic (NH4)2SiF6, (NH4)2SnBr6 and (NH4)2SnCl6 have been measured over a temperature range 60–500°K. Reorientation of the ammonium ion is generally the dominant relaxation mechanism and T1 minima are observed in all samples. Activation energies are low in each case, being 2·2 Kcal/mole for the fluosilicate, 1·44 and 1·24 Kcal/mole for the bromo- and chloro-stannate respectively. For the bromostannate a λ-point occurs at 145°K above which the activation energy apparently decreases to 0·26 Kcal/mole. Anion reorientation is detected in the fluosilicate at high temperatures, the correlation time for this motion being obtained from T measurements. There is also some evidence to suggest anion reorientation is becoming important in the stannihalides at high temperatures. The proton T in the stannibromide is largely determined by the rapid quadrupolar controlled relaxation of the bromine nuclei. Values for the bromine T1 are deduced and the quadrupolar relaxation mechanism discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号