首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interfacial rheology and structure of straight-chain and branched fatty alcohol mixtures
Authors:Kurtz Rachel E  Lange Arno  Fuller Gerald G
Institution:Department of Chemical Engineering, Stanford University, Stanford, California, USA.
Abstract:Langmuir monolayers of mixtures of straight-chain and branched molecules of hexadecanol and eicosanol were studied using surface pressure-area isotherms, Brewster angle microscopy, and interfacial rheology measurements. For hexadecanol mixtures below 30% branched molecules, the isotherms show a lateral shift to a decreasing area proportional to the fraction of straight chains. Above a 30% branched fraction, the isotherms are no longer identical in shape. The surface viscosities of both straight and mixed monolayers exhibit a maximum in the condensed untilted LS phase at pi = 20 mN/m. Adding branched chains results in a nonmonotonic increase in surface viscosity, with the maximum near 12% branched hexadecanol. A visualization of these immiscible monolayers using Brewster angle microscopy in the liquid condensed phase shows the formation of discrete domains that initially increase in number density and then decrease with increasing surface pressure. Eicosanol mixtures exhibit different rheological and structural behavior from hexadecanol mixtures. The addition of branched chains results in a lateral shift to increasing area, proportional to the fraction and projected area of both straight and branched chains. A phase transition is seen for all mixtures, including pure straight chains, at pi = 15 mN/m up to 50% branched chains. A second transition is seen at pi = 25 mN/m when the isotherms cross over. Above this transition, the isotherms shift in the reverse direction with increasing branched fraction. The surface viscosities of both straight and mixed monolayers show a maximum in the L2' phase near pi = 5 mN/m. The surface viscosity is constant for low branched fractions and decays beyond 15% branched chains.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号