首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A radical-anion chain mechanism initiated by dissociative electron transfer to a bicyclic endoperoxide: insight into the fragmentation chemistry of neutral biradicals and distonic radical anions
Authors:Magri David C  Workentin Mark S
Institution:Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada. david.magri@uoit.ca
Abstract:The electron-transfer (ET) reduction of two diphenyl-substituted bicyclic endoperoxides was studied in N,N-dimethylformamide by heterogeneous electrochemical techniques. The study provides insight into the structural parameters that affect the reduction mechanism of the O-O bond and dictate the reactivity of distonic radical anions, in addition to evaluating previously unknown thermochemical parameters. Notably, the standard reduction potentials and the bond dissociation energies (BDEs) were evaluated to be -0.55+/-0.15 V and 20+/-3 kcal mol(-1), respectively, the last representing some of the lowest BDEs ever reported. The endoperoxides react by concerted dissociative electron transfer (DET) reduction of the O-O bond yielding a distonic radical-anion intermediate. The reduction of 1,4-diphenyl-2,3-dioxabicyclo2.2.2]oct-5-ene (1) results in the quantitative formation of 1,4-diphenylcyclohex-2-ene-cis-1,4-diol by an overall two-electron mechanism. In contrast, ET to 1,4-diphenyl-2,3-dioxabicyclo2.2.2]octane (2) yields 1,4-diphenylcyclohexane-cis-1,4-diol as the major product; however, in competition with the second ET from the electrode, the distonic radical anion undergoes a beta-scission fragmentation yielding 1,4-diphenyl-1,4-butanedione radical anion and ethylene in a mechanism involving less than one electron. These observations are rationalized by an unprecedented catalytic radical-anion chain mechanism, the first ever reported for a bicyclic endoperoxide. The product ratios and the efficiency of the catalytic mechanism are dependent on the electrode potential and the concentration of weak non-nucleophilic acid. A thermochemical cycle for calculating the driving force for beta-scission fragmentation is presented, and provides insight into why the fragmentation chemistry of distonic radical anions is different from analogous neutral biradicals.
Keywords:electron transfer  fragmentation  peroxides  radical ions  reactive intermediates
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号