首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bringing about matrix sparsity in linear-scaling electronic structure calculations
Authors:Rubensson Emanuel H  Rudberg Elias
Institution:Division of Scientific Computing, Department of Information Technology, Uppsala University, Uppsala, Sweden. emanuel.rubensson@it.uu.se
Abstract:The performance of linear-scaling electronic structure calculations depends critically on matrix sparsity. This article gives an overview of different strategies for removal of small matrix elements, with emphasis on schemes that allow for rigorous control of errors. In particular, a novel scheme is proposed that has significantly smaller computational overhead compared with the Euclidean norm-based truncation scheme of Rubensson et al. (J Comput Chem 2009, 30, 974) while still achieving the desired asymptotic behavior required for linear scaling. Small matrix elements are removed while ensuring that the Euclidean norm of the error matrix stays below a desired value, so that the resulting error in the occupied subspace can be controlled. The efficiency of the new scheme is investigated in benchmark calculations for water clusters including up to 6523 water molecules. Furthermore, the foundation of matrix sparsity is investigated. This includes a study of the decay of matrix element magnitude with distance between basis function centers for different molecular systems and different methods. The studied methods include Hartree–Fock and density functional theory using both pure and hybrid functionals. The relation between band gap and decay properties of the density matrix is also discussed.
Keywords:sparsity  linear scaling  sparse matrix  electronic structure calculations  Hartree–Fock  density functional theory  Kohn–Sham  truncation  error control  matrix norm
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号