首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Non-enzymatic reduction of quinone methides during oxidative coupling of monolignols: implications for the origin of benzyl structures in lignins
Authors:Holmgren Anders  Brunow Gösta  Henriksson Gunnar  Zhang Liming  Ralph John
Institution:Department of Fiber and Polymer Technology, School of Chemical Sciences, Royal Institute of Technology, KTH, 100 44 Stockholm, Sweden.
Abstract:Lignin is believed to be synthesized by oxidative coupling of 4-hydroxyphenylpropanoids. In native lignin there are some types of reduced structures that cannot be explained solely by oxidative coupling. In the present work we showed via biomimetic model experiments that nicotinamide adenine dinucleotide (NADH), in an uncatalyzed process, reduced a beta-aryl ether quinone methide to its benzyl derivative. A number of other biologically significant reductants, including the enzyme cellobiose dehydrogenase, failed to produce the reduced structures. Synthetic dehydrogenation polymers of coniferyl alcohol synthesized (under oxidative conditions) in the presence of the reductant NADH produced the same kind of reduced structures as in the model experiment, demonstrating that oxidative and reductive processes can occur in the same environment, and that reduction of the in situ-generated quinone methides was sufficiently competitive with water addition. In situ reduction of beta-beta-quinone methides was not achieved in this study. The origin of racemic benzyl structures in lignins therefore remains unknown, but the potential for simple chemical reduction is demonstrated here.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号