首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis of iron oxide cubes/reduced graphene oxide composite and its enhanced lithium storage performance
Authors:Chenran Hao  Tiange Gao  Anbao Yuan  Jiaqiang Xu
Affiliation:NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444 China
Abstract:Fe3O4 is considered as a promising electrode material for lithium-ion batteries (LIBs) due to its low cost and high theoretical capacity (928 mAh/g). Nevertheless, the huge volume expansion and poor conductivity seriously hamper its practical applications. In this study, we use a facile hydrothermal reaction together with a post heat treatment to construct the three-dimensional heterostructured composite (Fe3O4/rGO) inwhich reduced graphene oxide sheets wraped the Fe3O4 submicron cubes as the conductive network. The electric conduction and electrode kinetics of lithium ion insertion/ extraction reaction of the composite is enhanced due to the assist of conductive rGO, and thus the Li-storage performance is obviously improved. The composite exhibits a reversible charge capacity of 772.1 mAh/g at the current density of 0.1 A/g, and the capacity retention reaches 70.3% after 400 cycles at 0.5 A/g, demonstrating obviously higher specific capacity and rate capability over the Fe3O4 submicron cubes without rGO, and much superior cycling stability to the parent Fe2O3 submicron cubes without rGO. On the other hand, as a synergic conductive carbon support, the flexible rGO plays an important role in buffering the large volume change during the repeated discharge/charge cycling.
Keywords:Iron oxide  Reduced graphene oxide  Composite  Lithium ion battery  Anod  
本文献已被 CNKI 维普 ScienceDirect 等数据库收录!
点击此处可从《中国化学快报》浏览原始摘要信息
点击此处可从《中国化学快报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号