首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of electrooptical memory in suspensions of carbon nanotubes in liquid crystals
Authors:L A Dolgov  N I Lebovka  O V Yaroshchuk
Institution:(1) Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL 60607-7022, USA;
Abstract:Electrooptical response and microstructure of dispersions of multiwall carbon nanotubes in N-(4-ethoxybenzilidene)-4-n-butyl aniline nematic liquid crystal (LC) are studied. Irreversible response on the applied electric field (electrooptical memory) was revealed in oriented layers of such suspensions. The essence of this effect consists in the fact that, after the switch-on and subsequent switch-off of the field, the optical transmittance of suspension layer placed between two crossed polarizers substantially increases compared to the initial value which is typical for homeotropic orientation of LC. The efficiency of electrooptical memory nonmonotonically depends on the concentration of nanotubes in suspension, c CNT, reaching its maximum at c CNT = 0.02–0.05 wt %. It is shown that the memory of suspensions is caused by the incomplete relaxation of LC molecules from planar to initial homeotropic state after the electric field switch-off. The model is proposed and substantiated, according to which the planar state of LC is stabilized by the network of nanotubes formed upon the disintegration of aggregates under the action of electrohydrodynamic flows. The disclosed memory effect is rather common; it is brought about in the suspensions of carbon nanotubes based on other LCs in which electrohydrodynamic instabilities are developed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号