首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Measuring the thermophysical properties of porous fibrous materials with a new unsteady-state method
Authors:Mingwei Tian  Sukang Zhu  Ning Pan
Institution:(1) Institute of Physics of Fibrous Soft Matters, Donghua University, Shanghai, 200051, China;(2) Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
Abstract:In this article, the authors first introduced a theoretical model dealing with unsteady-state heat conduction in porous fabric to assess the effects due to local convection during the testing. A few important issues are analyzed including the criterion for local thermal equilibrium in the fibrous materials and the confidence time region (t mint max) during measuring process. The influence due to different heat source capacities can be ignored if the measuring time is greater than the minimum time duration t min , yet the heat loss via outside surface becomes negligible if the testing duration is below the maximum allowable value t max. Accordingly an apparatus that can simultaneously measure two thermophysical properties (the thermal conductivity k and thermal diffusivity a) of fibrous materials is developed in this study, which then leads to the determination of the volumetric capacity via ρC = k/a. In order to minimize the influence of potential local micro heat convection and the contact resistance during heat transfer, some background, and stacking materials are adopted in the apparatus. The error range of the apparatus is estimated empirically based on the data from measuring some Perspex samples. Finally four kinds of polyester nonwoven fabrics with different porosities are tested using the device and the data analyzed and compared with theoretical predictions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号